условия Липшица

условия Липшица
шарти Липшитс. матем.

Краткий русско-таджикский терминологический словарь по точным, естественным и техническим наукам. . 2013.

Игры ⚽ Поможем написать реферат

Смотреть что такое "условия Липшица" в других словарях:

  • Липшица условие —         ограничение на поведение приращения функции. Если для любых точек х и х , принадлежащих отрезку [а, b], приращение функции удовлетворяет неравенству          ∣f(x) f(x )∣ ≤ М∣х х ∣α          где 0 < α ≤ 1 и М некоторая постоянная, то… …   Большая советская энциклопедия

  • ЛИПШИЦА УСЛОВИЕ — ограничение на поведение приращения функции. Если для любых точек хи х , принадлежащих отрезку [а, Ь], приращение функции f удовлетворяет неравенству где и М нек рая постоянная, то говорят что функция f (х).на отрезке [а, b]удовлетворяет условию… …   Математическая энциклопедия

  • Условие Липшица — Липшицево отображение  отображение между метрическими пространствами X и Y, удовлетворяющее условию Для некоторой вещественной константы L и всех . Здесь обозначает метрику в пространстве X. Это условие часто называют условием Липшица …   Википедия

  • Дифференциальные уравнения — I Дифференциальные уравнения         уравнения, содержащие искомые функции, их производные различных порядков и независимые переменные. Теория Д. у. возникла в конце 17 в. под влиянием потребностей механики и других естественнонаучных дисциплин,… …   Большая советская энциклопедия

  • Дифференциальные уравнения — I Дифференциальные уравнения         уравнения, содержащие искомые функции, их производные различных порядков и независимые переменные. Теория Д. у. возникла в конце 17 в. под влиянием потребностей механики и других естественнонаучных дисциплин,… …   Большая советская энциклопедия

  • ПРИВАЛОВА ТЕОРЕМА — 1) П. т. о сопряженных функциях: пусть периодическая непрерывная функция с периодом 2p и тригонометрически сопряженная функция с f(t); тогда если f(t).удовлетворяет условию Липшица о показателем при 0<a<1 и имеет модуль непрерывности, не… …   Математическая энциклопедия

  • Персидский, Константин Петрович — Константин Петрович Персидский Дата рождения: 23 марта 1903(1903 03 23) Место рождения: Сызрань Дата смерти …   Википедия

  • Персидский — Персидский, Константин Петрович Константин Петрович Персидский Дата рождения: 23 марта 1903(1903 03 23) Место рождения: Сызрань Дата смерти …   Википедия

  • ОРТОГОНАЛЬНЫЕ МНОГОЧЛЕНЫ — система многочленов {Р n (х)}, удовлетворяющих условию ортогональности причем степень каждого многочлена Р n (х). равна его индексу п, а весовая функция (вес) на интервале ( а, b).или (в случае конечности a и b) на отрезке [a, b]. О. м. наз. о р… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ОБЫКНОВЕННОЕ — уравнение, в к ром неизвестной является функция от одного независимого переменного, причем в это уравнение входят не только сама неизвестная функция, но и ее производные различных порядков. Термин дифференциальные уравнения был предложен Г.… …   Математическая энциклопедия

  • КВАЗИЛИНЕЙНЫЕ ГИПЕРБОЛИЧЕСКИЕ УРАВНЕНИЯ И СИСТЕМЫ — уравнения и системы дифференциальных уравнений вида: где оператор Lхарактерен тем, что в каждой точке существует проходящий через нее вектор z такой, что для произвольного непараллельного к z, вектора hхарактеристическое уравнение относительно… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»